In vivo brain tumor demarcation using optical spectroscopy.

نویسندگان

  • W C Lin
  • S A Toms
  • M Johnson
  • E D Jansen
  • A Mahadevan-Jansen
چکیده

The applicability of optical spectroscopy for intraoperative detection of brain tumors/tumor margins was investigated in a pilot clinical trial consisting of 26 brain tumor patients. The results of this clinical trial suggest that brain tumors and infiltrating tumor margins (ITM) can be effectively separated from normal brain tissues in vivo using combined autofluorescence and diffuse-reflectance spectroscopy. A two-step empirical discrimination algorithm based on autofluorescence and diffuse reflectance at 460 and 625 nm was developed. This algorithm yields a sensitivity and specificity of 100 and 76%, respectively, in differentiating ITM from normal brain tissues. Blood contamination was found to be a major obstacle that attenuates the accuracy of brain tumor demarcation using optical spectroscopy. Overall, this study indicates that optical spectroscopy has the potential to guide brain tumor resection intraoperatively with high sensitivity.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fluorescence Spectroscopy for Quantitative Demarcation of Glioblastoma Using 5-Aminolevulinic Acid

Total resection of glioblastoma, the highly malignant brain tumor, is difficult to accomplish due to its diffuse growth and similarity to the surrounding brain tissue. A total resection is proven to increase patient survival. The aim of this thesis was to evaluate fiber-optical based fluorescence spectroscopy for quantitative demarcation of malignant brain tumors during the surgery. Five-aminol...

متن کامل

Optical Imaging of the Motor Cortex in the Brain in Order to Determine the Direction of the Hand Movements Using Functional Near-Infrared Spectroscopy (fNIRS)

Introduction: In recent years, optical imaging has attracted a lot of attention from scholars as a non- aggressive, efficient method for evaluating the activities of the motor cortex in the brain. Functional near-infrared spectroscopy (fNIRS (is a tool showing the hemodynamic changes in a cortical area of the brain according to optical principles. The present study has been de...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Verification of the Accuracy of the Delivered Dose in Brain Tumors by in Vivo Dosimetry Using Diode Detectors

Introduction: During radiotherapy, high accuracy in the dose delivery is required because there is a strong  relationship between the absorbed dose, local tumor control and particularly the normal tissue damage. In  many institutions, in vivo dosimetry using diodes is performed to check the actual dose delivered. In general,  the uncertainty in the dose delivered should fall within  ± 5% of the...

متن کامل

Demarcation of Brain Tumor Using Modified Fuzzy C-Means

The Demarcation and prediction of the area of the tumor have an important role in medical treatments of malignant tumors. This paper describes an application of Fuzzy set theory in medical image processing, namely brain tumor demarcation. Fuzzy C-Means is proved to be a good and efficient segmentation method. But the main disadvantage of this method is that it is highly sensitive to noise. In t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Photochemistry and photobiology

دوره 73 4  شماره 

صفحات  -

تاریخ انتشار 2001